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Abstract

In this paper, a numerical indirect method based on wavelets is proposed
for solving the general continuous time-variant linear quadratic optimal con-
trol problem. The necessary optimality conditions are applied to convert the
main problem into a boundary value problem, as a dynamic system. The
new problem, using two discrete schemes, Legendre and Chebyshev wavelets,
is changed to a system of algebraic equations. To demonstrate the efficiency
of the proposed method two analytical and two numerical examples are given.
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1 Introduction

Optimal control problems (OCP) are dynamic optimization problems with
many applications in industrial processes such as airplane, robotic arm, bio-
process system, biomedicine, electric power systems and plasma physics, etc. [3].

Using the necessary optimality conditions, the analytical solution of these
problems can be achieved. In this approach, the main problem, using the cal-
culus of variation and the Pontryagins minimum principle (PMP), leads to one
of the following problems: Hamilton-Jacobi-Belman (HJB) [27], two-boundary
value problem [3] and Riccati equation [12, 25]. These methods are named in-
direct methods [31]. The exact solution of these methods, except special cases,

1∗ Corresponding author Department of Applied Mathematics, Ferdowsi University of
Mashhad, Mashhad, e-mail: rghanbari@um.ac.ir

2Member of Optimization Laboratory in Faculty of Mathematical Sciences, Depart-
ment of Applied Mathematics, Ferdowsi University of Mashhad, Mashhad, Iran, e-mail:
khatere.moghadam67@gmail.com

3Department of Mathematics, Payame Noor University, PO BOX 19395-3697, Tehran, Iran,
e-mail: nejhadhosein@pnu.ac.ir



110 Reza Ghanbari, Khatere Ghorbani-Moghadam and Saeed Nezhadhosein

is found difficulty. So, the numerical indirect methods, such as shooting method
[23], are proposed. These methods require the good initial guesses that must be
in the domain of convergence.

Direct methods are other types of numerical algorithms. Based on parametriza-
tion(s) of control or/and state, the continuous problem is converted to a finite
dimensional optimization problem in these methods. The quality of solution de-
pends on discretization resolution. The pseudospectral approaches [9, 18] are
examples as these methods, where the signals are approximated by Lagrange func-
tions, as global basis, and the time nodes are the roots of orthogonal polynomials,
e.g. Legendre or Chebyshev polynomials.

Using the orthogonal set of functions, as a basis for L2(R), is common in direct
methods. The unknown functions in the problem are approximated as series of
orthogonal functions with unknown coefficients. So, the dynamic equations in
OCPs are converted to a system of algebraic equations. As for as we know,
there are three classes of the orthogonal functions: piecewise continuous functions
(e.g. Walsh [6], Block pulse [34], Haar wavelet [15]), orthogonal polynomials (e.g.
Legendre [10], Chebyshev [21], Lagrange [22]), sine and cosine functions (e.g.
Fourier series [28]).

The orthogonal functions are supported on the whole interval, so for functions
with abrupt variations or functions which are vanishing outside a short interval,
wavelets, as local basis, are introduced [7, 29]. Wavelets [8] are a family of func-
tions which constructed from dilation and translation of a single function named
mother wavelet. These functions have been extensively used to find an approxi-
mation solution for OCPs [5, 14, 16, 24, 26, 29, 30].

In this work, using two classes of wavelets, we apply a numerical indirect
method for solving two-boundary value problem (TBVP) arising from the neces-
sary optimality conditions of the general time variant linear quadratic (TVLQ)
optimal control problem. The derivative of state and costate signals are expanded
as wavelet basis (Legendre and Chebyshev wavelets) with unknown coefficients.
Next, using the operational matrix of integration, the TBVP is converted to a
system of algebraic equations, which can be solved easily by commercial packages
and softwares. Usually, wavelets are used as direct method for solving OCPs.
But we here apply them to make a discrete version of the two-boundary value
problem.

Two main contributions of this paper are:

1. Introducing an analytical-numerical approach for solving the TVLQ problem
as a main class of OCPs.

2. Converting the main problem to a set of algebraic equations instead a set
of differential equations (see [29]).

The paper is organized as follows: in Section 2, the problem formulation is given.
In Section 3, wavelets are introduced and two classes of them are presented. In
Section 4, the proposed method is presented. In Section 5, some numerical exam-
ples are discussed. We conclude in Section 6.
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2 Problem statement

We consider the general continuous TVLQ optimal control problem given in
(1), in which a control function, u, is exerted over the planning horizon [t0, tf ].
The goal of this problem is to find the control input u(.) ∈ Rr that minimize the
cost functional with quadratic Bolza form with linear time-variant state equation,
as follows:

(TV LQ)


min J = 1

2x
T (tf )F̄ x(tf ) + 1

2

∫ tf
t0

(xT (t)Q(t)x(t) + uT (t)R(t)u(t))dt

ẋ(t) = A(t)x(t) +B(t)u(t), t ∈ [t0, tf ]
x(t0) = x0,

(1)

where, the state matrix, A(t), and the control matrix, B(t), are time-variant
matrices with dimension n × n and n × r, respectively, R(t) is a time-variant
r−square positive symmetric matrix, Q(t) is an n−square semi-positive symmetric
matrix, F̄ is n−square, x(.) ∈ Rn denotes the state vector for the system, x0 ∈ Rn
is the initial state, t0 and tf are constant initial and final times, respectively.
TVLQ optimal control problems have some applications in many areas, such as
game theory, quantum mechanics, economy, environment problems, etc., (see [4]),
or in engineering models [1].

3 Wavelet

Wavelets are a family of functions which are constructed from dilation and
translation of a special function called the mother wavelet. If a and b are the dila-
tion and the translation parameters, then the continuous wavelets are constructed
as following [29]:

ψa,b(t) = |a|−
1
2ψ(

t− b
a

), a, b ∈ R, a 6= 0, (2)

where ψ(t) is the mother wavelet. If a = a−k0 and b = nb0a
−k
0 (a0 > 1, b0 > 0 and

n, k are positive in integer numbers) then we have the following discrete wavelets:

ψk,n(t) = |a0|
k
2ψ(ak0t− nb0). (3)

The family of wavelets {ψk,n} constructs a basis for L2(R). Based on the mother
wavelet, we can achieve special wavelets. In the following, using two classes of
polynomials, Legendre and Chebyshev, we introduce two settings of wavelets.

3.1 Chebyshev wavelets

The Chebyshev polynomials of the first kind can be constructed by the fol-
lowing recursive formula [13]:

T0(t) = 1, T1(t) = t, Tm+1 = 2tTm(t)− Tm−1(t), m = 1, 2, . . . . (4)
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These functions are orthogonal with respect to the weight function w(t) =
= 1/

√
1− t2, on the interval [−1, 1], (see [13]). For the orthonormality, these

functions are used by the following coefficients:

T̃m(t) =

{ 1√
π
, m = 0,√
2
πTm(t), m > 0.

(5)

Now, the Chebyshev wavelets (CWs) can be constructed on the time interval [0, 1)
as follows [36]:

φ(1)nm(t) =

{
2
k
2 T̃m(2kt− 2n+ 1), n−1

2k−1 ≤ t < n
2k−1 ,

0, O.W.,
(6)

where, k ∈ N is the index of dilation, or level of CWs, n = 1, 2, . . . , 2k−1 is the
index of the translation, m = 0, 1, . . . ,M − 1 is the order for Chebyshev polyno-
mials and t denotes the time. In CWs, the translation and dilation parameters
are b = (2n − 1)2−k and a = 2−k, respectively. Thus, CWs are denoted by

φ
(1)
nm = φ(1)(k, n,m, t) and they are orthonormal with the following weight func-

tions:

wn(t) = w(2kt− 2n+ 1), (7)

where, w(t) = 1/
√

1− t2. The sequence {φ(1)nm(t)}, in L2[0, 1]wn , will be used as
basis for the discretization of TBVP in the next section.

The vector of CWs is defined as following:

φ
(1)
(M) = [φ

(1)
10 , φ

(1)
11 , . . . , φ

(1)
1M−1, φ

(1)
20 , φ

(1)
21 , . . . , φ

(1)
2M−1, . . . , φ

(1)

2k−10
, . . . , φ

(1)

2k−1M−1]
T .

(8)

For computational experiment, we also need the operational matrix of inte-
gration of the vector of CWs, i.e. the matrix P (1) in following approximation
[20]: ∫ t

0
φ
(1)
(M)(t)dt ' P

(1)φ
(1)
(M)(t), (9)

where, P (1) as the operational matrix is as 2k−1M × 2k−1M square matrix (for
more details see [20]).

3.2 Legendre wavelets

Legendre wavelets (LWs) are constructed by Legendre polynomials, which are
defined by the following recessive formula [19]:

L0(t) = 1, L1(t) = t, Lm+1(t) =
2m+ 1

m+ 1
tLm(t)− m

m+ 1
Lm−1(t), m = 1, 2, 3, . . .

(10)
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where, Lm(t), t = 0, 1, 2, . . . is a Legendre polynomial with order m. These
functions are orthogonal with respect the weight function w(x) = 1 on the interval
[−1, 1]. The Legendre wavelets are constructed on [0, 1] as follows [29]:

φ(2)n,m(t) =

{ √
m+ 1

22
k
2Lm(2kt− 2n+ 1), n−1

2k−1 ≤ t ≤ n
2k−1

0, O.W.,
(11)

where, n = 1, 2, . . . , 2k−1, k is any positive integer number and m is the order

of Legendre polynomial. In (11), the coefficient
√
m+ 1

2 is applied to have the

orthogonality and the translation and dilation parameters are b = (2n − 1)2−k

and a = 2−k, respectively. The sequence {φ(2)nm(t)} in space L2[0, 1]w is used to
discrete TBVP in the next section. The vector of LWs is defined as follows:

φ
(2)
(M) = [φ

(2)
10 , φ

(2)
11 , . . . , φ

(2)
1M−1, φ

(2)
20 , φ

(2)
21 , . . . , φ

(2)
2M−1, . . . , φ

(2)

2k−10
, . . . , φ

(2)

2k−1M−1]
T .

(12)

The integrate of LW vector, φ
(2)
(M)(t), can be approximate as following [29]:∫ t

0
φ
(2)
(M)(t)dt ' P

(2)φ
(2)
(M)(t), (13)

where, P (2) as the operational matrix is as 2k−1M × 2k−1M square matrix (for
more details see [29]).

3.3 Function approximation

Each integrable function as f(t) ∈ L2[0, 1) can be approximated by LWs or

CWs. Let ψij(t) be the wavelet basis, in which for CW basis ψij(t) = φ
(1)
ij (t)

(see (6)) or for LW basis ψij(t) = φ
(2)
ij (t) (see (11)), for i = 1, 2, . . . , 2k−1, j =

0, 1, . . . ,M − 1. Now, let:

cij =
〈f(t), ψi,j(t)〉w
〈ψi,j(t), ψi,j(t)〉w

, i = 1, 2, . . . , 2k−1, j = 0, 1, . . . ,M − 1, t ∈ [0, 1], (14)

where, the notation 〈, 〉w, denotes the inner product and defined as following:

〈f(t), g(t)〉w =

∫ 1

0
w(t)f(t)g(t)dt. (15)

Now, let:

C = [c10, c11, . . . , c1M−1, c20, c21, . . . , c2M−1, . . . , c2k−10, . . . , c2k−1M−1]
T . (16)

The function f(t) can be approximated by wavelet basis [36]:

f(t) '
2k−1∑
n=1

M−1∑
m=0

cnmψnm(t). (17)
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The eqn (17) can be represented as following:

f(t) ' CTψ(M)(t). (18)

where ψ(M)(t) = φ
(1)
(M)(t), for CW and ψ(M)(t) = φ

(2)
(M)(t), for LW, and C is defined

in (16).

Remark 1. Every constant scaler, x ∈ R, can be approximated by wavelets (LW
or CW). Let:

X̄ = [x,

(M−1)times︷ ︸︸ ︷
0, . . . , 0 , x,

(M−1)times︷ ︸︸ ︷
0, . . . , 0 , . . . , x,

(M−1)times︷ ︸︸ ︷
0, . . . , 0 ]TM2k−1 , (19)

then, x ' X̄Tψ(M)(t). Moreover, for x ∈ Rn we have x ' Xψ(M)(t), where
Xn×M2k−1 is the coefficient matrix, when each row of X is constructed by (19).

Remark 2. The product of two wavelet vectors can be approximated by wavelet.
Let c be M2k−1 × 1 constant vector. Then we have:

ψ(M)(t)ψ
T
(M)(t)c ' C̃ψ(M)(t), (20)

where, C̃M2k−1×M2k−1 is the product operational matrix (see [20] for CW and [29]
for LW).

4 The proposed approach

In this section, we give a numerical indirect method for solving TVLQ optimal
control problem, based on CW and LW approximations. Without loss of the
generality, we can assume that [t0, tf ] = [0, 1] by using a simple transformation
τ = (t− t0)/(tf − t0), the time interval [t0, tf ] can be embedded in [0, 1]. Firstly,
the problem is converted into a TBVP, using necessary optimality conditions,
PMP principle. Next, the new problem is converted into a system of the matrix
algebraic equations, using CW and LW.

4.1 Necessary optimality conditions

For the TVLQ problem given in (1), the necessary optimality conditions, which
can be achieved by variational approach, are as follows [27]:

∂H

∂u
= R(t)u(t) + λT (t)B(t) = 0, (21)

ẋ =
∂H

∂λ
= A(t)x(t) +B(t)u(t), (22)

λ̇ = −∂H
∂x

= −Q(t)x(t)−AT (t)λ(t), (23)

λ(tf ) = F̄ x(tf ), x(t0) = x0., (24)
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where, the scaler function H, called Hamiltonian, is defined as follows:

H(x(t), u(t), λ(t)) = 1
2(xT (t)Q(t)x(t) + uT (t)R(t)u(t))+
λT (t)(A(t)x(t) +B(t)u(t)), (25)

where, λ(t)n×1 is the Lagrange multiplier that is also known as the costate or
adjoint variable. From (21), the control signals can be represented by the costate
vector as u(t) = −R(t)−1BT (t)λ(t). By replacing this equation in eqn (22), we
have:

ẋ = A(t)x(t)− B̄(t)λ(t), (26)

λ̇ = −AT (t)λ(t)−Q(t)x(t), (27)

λ(tf ) = F̄ x(tf ), x(t0) = x0. (28)

where, B̄(t) = B(t)R−1(t)B(t)T . The eqns (26)-(28), are constructed a TBVP of
2n dynamic equations with 2n unknowns. Here, we propose a numerical method
based on CWs and LWs to solve it.

4.2 Solving TBVP by a system of algebraic equations

In this section, we use wavelets (CWs (see section 3.1) or LWs (see section
3.2)), to solve TBVP, approximately. For this purpose, we approximate each
component of TBVP in system (26)-(28), which contains coefficient matrices,
state and costate signals.

The control matrix, A(t), in eqn (26), could be approximated by wavelets. Let

A(t) =


α1(t) . . . αn(t)
αn+1(t) . . . α2n(t)

...
. . .

...
αn2−n+1(t) . . . αn2(t)

 =
n2∑
i=1

Aiαi(t), (29)

where αi(t), for i = 1, 2, . . . , n2 are continuous scaler functions, in L2[0, 1] and
Ai, i = 1, 2, . . . , n2, is constructed as follows:

(Ai)kj =

{
1 , k = [ in ] + 1, j = i− (k − 1)n,
0 , O.W.

(30)

Now, similar to (18), αi(t) ' dTi ψ(M)(t), where di are defined in (16). Therefore,
we have

A(t) '
n2∑
i=1

Aid
T
i ψ(M)(t). (31)

By a very similar manner, the matrices Q(t) and B̄(t) replaced by following:

Q(t) '
n2∑
i=1

Qih
T
i ψ(M)(t), B̄(t) '

n2∑
i=1

B̄ie
T
i ψ(M)(t), (32)
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where, Qi and B̄i, i = 1, 2, . . . , n2, have a similar definition given in (30).

The derivative of the control and costate variables can be approximated by
unknown wavelet coefficients, as follows (see Remark 1):

ẋ(τ) ' Fψ(M)(τ), (33)

λ̇(τ) ' Gψ(M)(τ), (34)

where, F and G are unknowns n × m matrices (m = M2k−1) . Now, by the
wavelet operational matrix, P(m×m) (for CWs, P = P (1) in eqn (9) and for LWs,

P = P (2) in eqn (13)) and integrating of both sides of eqns (33) and (34), the
state and costate signals can be calculated as follows:

x(t) = x(0) +

∫ t

0
ẋ(τ)dτ ' x0 + F

∫ t

0
ψ(M)(t) ' (X0 + FP )ψ(M)(t), (35)

λ(t) = λ(0) +

∫ t

0
λ̇(τ)dτ ' λ0 +G

∫ t

0
ψ(M)(t) ' (Λ0 +GP )ψ(M)(t). (36)

In (36), X0 = [x0, 0, . . . , 0] and Λ0 = [λ0, 0, . . . , 0] are n × m matrices, where
λ(0) ' Λ0ψ(M)(t) and x(0) ' X0ψ(M)(t) (see Remark 1). For TBVP, given in
(26)-(28), the initial condition of the costate vector, λ0 = λ(t0), is not available.
From eqn (36), let t = 1, we have:

λ(1) = λ(0) +

∫ 1

0
λ̇(τ)dτ ' λ(0) +G

∫ 1

0
ψ(M)(τ)dτ. (37)

But, from Remark 1, we have
∫ 1
0 ψ(M)(τ)dτ ' Oψ(M)(t), where O is an m ×m

zero matrix which the first entire is one. Therefore, we have:

λ(1) ' λ0 +GOψ(M)(t) ' (Λ0 +GO)ψ(M)(t). (38)

Using a very similar manner, we have:

x(1) ' (X0 +GO)ψ(M)(t). (39)

But, from the boundary conditions given in eqn (28), we have λ(1) = F̄ x(1). So,
from (38) and (39), the initial condition of the costate vector is approximated as
follows:

Λ0 ' F̄ (X0 + FO)−GO. (40)

4.2.1 TBVP approximation

Using the wavelet approximation of matrices, eqns (31)-(32), state and costate
signals, eqns (35)-(36), we now can approximate TBVP, (26)-(28), based on CWs
or LWs. For this purpose, by replacing eqns (31), (32) and (33)-(36) in dynamic
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system (26)-(28), we have:

Fψ(M)(t) =
n2∑
i=1

Aid
T
i ψ(M)(t)(X0 + FP )ψ(M)(t)

−
n2∑
i=1

B̄ie
T
i ψ(M)(t)(Λ0 +GP )ψ(M)(t),

Gψ(M)(t) = −
n2∑
i=1

ψT(M)(t)diA
T
i (Λ0 +GP )ψ(M)(t)

−
n2∑
i=1

Qih
T
i ψ(M)(t)(X0 + FP )ψ(M)(t).

(41)

By rearranging each component of the system (41), we have:

Fψ(M)(t) =
n2∑
i=1

Ai(X0 + FP )ψ(M)(t)ψ
T
(M)(t)di

−
n2∑
i=1

B̄i(Λ0 +GP )ψ(M)(t)ψ
T
(M)(t)ei,

Gψ(M)(t) = −
n2∑
i=1

ATi (Λ0 +GP )ψ(M)(t)ψ
T
(M)(t)di

−
n2∑
i=1

Qi(X0 + FP )ψ(M)(t)ψ
T
(M)(t)hi.

(42)

From (20), there exist m-square matrices Di, Ei and Hi, for i = 1, 2, . . . , n2, such
that:

ψ(M)(t)ψ
T
(M)(t)di ' Diψ(M)(t), (43)

ψ(M)(t)ψ
T
(M)(t)ei ' Eiψ(M)(t), (44)

ψ(M)(t)ψ
T
(M)(t)hi ' Hiψ(M)(t). (45)

From (43)-(45) and (42), we have:
Fψ(M)(t) =

n2∑
i=1

Ai(X0 + FP )Diψ(M)(t)−
n2∑
i=1

B̄i(Λ0 +GP )Eiψ(M)(t),

Gψ(M)(t) = −
n2∑
i=1

ATi (Λ0 +GP )Diψ(M)(t)−
n2∑
i=1

Qi(X0 + FP )Hiψ(M)(t).

(46)

By removing the wavelet vector ψ(M)(t) from both sides of system (46), and
replacing Λ0 from eqn (40), we have:

F =
n2∑
i=1

Ai(X0 + FP )Di −
n2∑
i=1

B̄i(F̄X0 + F̄FO +G(P −O))Ei,

G = −
n2∑
i=1

ATi (F̄X0 + F̄FO +G(P −O))Di −
n2∑
i=1

Qi(X0 + FP )Hi.

(47)

Let:

∆1 =
n2∑
i=1

AiX0Di −
n2∑
i=1

B̄iF̄X0Ei, ∆2 = −
n2∑
i=1

ATi F̄X0Di −
n2∑
i=1

QiX0Hi.(48)
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Now, from eqn (48) and rearranging the system (47), we have:
(F −

n2∑
i=1

AiFPDi +
n2∑
i=1

B̄iF̄FOEi) +
n2∑
i=1

B̄iG(P −O)Ei = ∆1,

(
n2∑
i=1

ATi F̄FODi +
n2∑
i=1

QiFPHi) + (G+
n2∑
i=1

ATi G(P −O)Di) = ∆2.

(49)

To convert the system (49) to a linear system, we use the following definition
and lemma given by [17].

Definition 1. [17] Let A = [a1, a2, . . . , am] ∈ Rn×m be a matrix. The linear
operator vec(.) is defined as follows:

vec(A) = [aT1 , a
T
2 , . . . , a

T
m]T .

Lemma 1. Let A ∈ Rn×m, B ∈ Rp×q and X ∈ Rm×p. We have:

vec(AXB) = (BT ⊗A)vec(X),

where, ⊗ is the Kronecker product of matrices (see [17]).

Now, from system (49), Definition 1 and Lemma 1, we have:

{I −
n2∑
i=1

(PDi)
T ⊗Ai +

n2∑
i=1

(OEi)
T ⊗ (B̄iF̄ )}vec(F )

+{
n2∑
i=1

((P −O)Ei)
T ⊗ B̄i}vec(G) = vec(∆1),

{
n2∑
i=1

(ODi)
T ⊗ (ATi F̄ ) +

n2∑
i=1

(PHi)
T ⊗Qi}vec(F )

+{I +
n2∑
i=1

((P −O)Di)
T ⊗ATi }vec(G) = vec(∆2).

(50)

To have a convenient form of (50), let:

Ā =


I −

n2∑
i=1

(PDi)
T ⊗Ai +

n2∑
i=1

(OEi)
T ⊗ (B̄iF̄ )

n2∑
i=1

((P −O)Ei)
T ⊗ B̄i

n2∑
i=1

(ODi)
T ⊗ (ATi F̄ ) +

n2∑
i=1

(PHi)
T ⊗Qi I +

n2∑
i=1

((P −O)Di)
T ⊗ATi

 ,

b̄ =

[
vec(∆1)
vec(∆2)

]
=


vec(

n2∑
i=1

AiX0Di −
n2∑
i=1

B̄iF̄X0Ei)

vec(−
n2∑
i=1

ATi F̄X0Di −
n2∑
i=1

QTi X0Hi)

 , x =

[
vec(F )
vec(G)

]
.

So, the system (50) can be shown by:

Āx = b̄. (51)

Therefore, to have an approximation solution of TVLQ, we can solve only the
linear system (51).
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Remark 3. The linear system (51) contains nM2k−1 equations and nM2k−1

unknowns.

Remark 4. For a linear quadratic time-variant system with time-invariant sys-
tem, i.e. when A(t) = A, B(t) = B, Q(t) = Q and R(t) = R are constant
matrices, the linear system (51) can be simplified as follows:[
I − P T ⊗A+OT ⊗ (B̄F̄ ) (P −O)T ⊗ B̄
P T ⊗Q+OT ⊗ (AT F̄ ) I + (P −O)T ⊗AT

]
x =

[
vec(AX0 − B̄F̄X0)

vec(−QX0 −AT F̄X0)

]
.

(52)

5 Numerical experiments

In this section, to investigate the efficiency and simplicity of the proposed
method, four numerical examples are considered. The numerical results are ob-
tained with two classes of wavelet basis, LW and CW, with different parameters.
Also, the results are compared with the results of bvp4c as a standard package
provided in Matlab, or the exact solution (if that exists).

For the first two examples with time variant system, which don’t have analyt-
ical solutions, the results are compared with bvp4c. For the second two examples
with time-invariant system, the numerical results are compared with the exact
solution. In this case, the exact error of approximation for the control and state
signals are calculated as follows:

e2(f) =

√∫ 1

0
(f̃(t)− f∗(t))2dt., (53)

where, f∗(t) is the exact signal and f̃(t) is the approximated signal. Also, we use
absolute error for the performance index, EJ = |J − J∗|. Moreover, the CW and
LW basis are compared in the proposed method.

The method is implemented in Matlab R2011a environment on a Notebook
under Windows 7 Ultimate, CPU 2.53 GHz and 4.00 GB of RAM.

5.1 Example 1 [2]

Consider the following TVLQ with single-input scaler system [2]:

J =
1

2

∫ 1

0
(x2(t) + u2(t))dt,

ẋ(t) = tx(t) + u(t),

x(0) = 1.

The numerical solution of the corresponding Riccati equation with four different
orthogonal polynomials was reported in [2]. Table 1 shows the error of optimal
feedback gain in time nods, tj = j/10, j = 0, 1, . . . , 9, for the proposed method
(CW and LW), with two classes of parameters, M = 2, and k = 3, 4, and bvp4c.
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Table 1: The obtained optimal feedback gain for LW and CW and bvp4c methods,
for Example 1.

CW (M = 2) LW (M = 2)
t Exact[2] bvp4c k = 3 k = 4 k = 3 k = 4

0 0.9689 4.88× 10−4 1.74× 10−4 7.32× 10−4 1.02× 10−3 1.35× 10−3

0.1 0.9518 2.52× 10−3 1.51× 10−3 9.03× 10−4 1.05× 10−3 1.53× 10−3

0.2 0.9109 3.81× 10−4 7.4× 10−5 1.38× 10−3 8.4× 10−5 8.90× 10−3

0.3 0.8444 1.15× 10−3 9.12× 10−4 9.22× 10−4 1.50× 10−4 6.22× 10−4

0.4 0.7526 5.67× 10−4 2.31× 10−3 6.97× 10−4 1.8× 10−3 1.66× 10−4

0.5 0.6387 1.54× 10−3 6.87× 10−3 5.07× 10−4 8.62× 10−3 1.58× 10−3

0.6 0.5088 7.13× 10−4 4.41× 10−3 6.11× 10−4 3.1× 10−3 4.9× 10−5

0.7 0.3713 7.46× 10−4 7.58× 10−4 1.23× 10−3 9.0× 10−5 8.16× 10−4

0.8 0.2354 4.08× 10−4 1.91× 10−3 2.34× 10−3 6.2× 10−4 9.72× 10−4

0.9 0.1095 4.12× 10−4 5.97× 10−3 1.01× 10−3 3.81× 10−3 1.55× 10−4

e2 3.49× 10−2 1.07× 10−2 3.36× 10−3 1.02× 10−2 9.37× 10−3

Table 2: The obtained performance index for LW and CW methods and bvp4c
for Example 1.

CW (M = 2) LW (M = 2)
bvp4c k = 3 k = 4 k = 3 k = 4

0.5948 0.4866 0.4848 0.4843 0.4843

From Table 1, it is evident that the error of the optimal feedback gain, e2,
for CW (M = 2, k = 4) is less than other methods. Table 2 shows the obtained
performance index for LW and CW methods (M = 2, k = 3, 4) and bvp4c. From
this table, the performance index for the LW and CW methods are less than bvp4c
and LW is better than CW. Note that in [2], there aren’t any report of the exact
and approximated value of the performance index.

To have a graphical comparison, the graph of the optimal feedback gains for
the proposed method (LW and CW), with parameters M = 2, k = 4 and bvp4c,
is shown in Fig1. Also, in Fig 2, the state and control signals for these methods,
with the parameters M = 2, k = 4, are shown.

5.2 Example 2 [16]

Let the following three-dimensional TVLQ problem [16]:

min J =

∫ 5

0
(xT (t)Q(t)x(t) + uT (t)R(t)u(t))dt,

ẋ =

0.01t 0.01 0
0 0.01t 0
0 0 0.01t2

x(t) +

 0
0.01
0.01

u(t),

x(0) = [111]T .
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Figure 1: Graphical results of the optimal feedback gain for CW, LW (M = 2, k =
4) and bvp4c methods, for Example 1.
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Figure 2: Graphical results of the state (a) and control (b) signals for CW, LW
(M = 2, k = 4) and bvp4c methods, for Example 1.

where,

Q(t) =

0.01t 0 0
0 0.01t 0
0 0 0.01t

 , R(t) = 0.01 exp(−0.01t).

The problem was solved by the proposed method (LW and CW) and the bvp4c.
The value of state signals, xi(t), i = 1, 2, 3, and control signal, u(t), in time nodes
tj = j/2, j = 0, 1, . . . , 10 are reported in Table 3.

Table 4 compares the values of the performance index for LW, CW and bvp4c
methods. From Table 4, the value of performance index, for CW (M = 2, k = 4)
is the best among other methods.

Fig 3 shows the sate signals, xi(t), i = 1, 2, 3, for LW (a), CW (b), and bvp4c
methods. Also, the graphical comparison of the control signal for these methods
is given in Fig 4.
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Table 3: The values of the control, u and state signals x1, x2, x3, by LW and CW
(M = 2, k = 4), in Example 2.

x1(tj) x2(tj) x3(tj) u(tj)
t LW CW LW CW LW CW LW CW

0 0.9989 0.9996 0.9998 0.9996 1 0.9997 −0.3261 −0.3246
0.5 1.0069 1.0063 0.9997 0.9997 0.9988 0.9989 −0.3212 −0.3207
1 1.0158 1.0152 1.0023 1.002 1.0007 1.0007 −0.3115 −0.3113

1.5 1.0267 1.0265 1.0069 1.0067 1.0071 1.0074 −0.297 −0.2964
2 1.0396 1.0403 1.0135 1.0138 1.0192 1.0212 −0.2775 −0.275

2.5 1.0548 1.0568 1.0223 1.0235 1.0386 1.0443 −0.2527 −0.2473
3 1.0794 1.077 1.0386 1.0369 1.0892 1.0858 −0.208 −0.211

3.5 1.1015 1.1002 1.0542 1.0532 1.1474 1.1457 −0.1668 −0.1681
4 1.1263 1.1264 1.0723 1.0724 1.2263 1.2295 −0.1201 −0.1184

4.5 1.1538 1.1559 1.0931 1.0948 1.3302 1.3436 −0.0679 −0.0626
5 1.8993 1.8932 1.1231 1.1245 1.5023 1.5017 0.0003 0.0004

Table 4: The obtained performance index for LW, CW and bvp4c methods for
Example 2.

CW (M = 2) LW (M = 2)
bvp4c k = 3 k = 4 k = 3 k = 4

0.4978 0.4737 0.4716 0.4743 0.4721
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Figure 3: The sate signals, xi(t), i = 1, 2, 3, of the LW (a), CW (b) and bvp4c
methods, for Example 2.

5.3 Example 3 [11]

Consider the following one-dimensional time-invariant linear quadratic OCP
[11]:

min J =
1

2

∫ 1

0
(x2(t) + u2(t))dt,

ẋ = −2x(t) + u(t),

x(0) = 1.
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Figure 4: The control signal of the LW, CW and bvp4c methods, for Example 2.

The exact solution can be easily achieved by PMP. The exact solution is [11]:

x∗(t) = c1e
√
5t + c2e

−
√
5t,

u∗(t) = (2 +
√

5t)c1e
−
√
5t + (2−

√
5t)c2e

−
√
5t,

k∗(t) =

√
5 cosh

√
5(1− t)− sinh

√
5(1− t)√

5 cosh
√

5(1− t) + 3 sinh
√

5(1− t)
,

where, c1 = −0.0017 and c2 = 1.0017. The error of the approximate signals,
including the state error, e2(x), the control error, e2(u) and feedback gain error,
e2(k), for the proposed method (CW and LW), with two classes of parameters,
(M = 2, k = 3, 4), are reported in Table 5. The exact performance index in this
problem is J∗ = 0.121767. The absolute error of performance index, e(J), for the
the proposed method is denoted in the last row of the Table 5.

Table 5: The error of the approximate signals and the performance index for LW
and CW for Example 3.

CW (M = 2) LW (M = 2)
Error k = 3 k = 4 k = 3 k = 4

e2(x) 7.1× 10−3 3.8× 10−3 6.8× 10−3 3.7× 10−3

e2(u) 3.8× 10−3 3.5× 10−3 3.7× 10−3 3.5× 10−3

e2(k) 1.2368 1.55× 10−2 1.55× 10−3 1.55× 10−3

e(J) 3.43× 10−3 4.01× 10−3 4.18× 10−3 4.18× 10−3

From Table 5, it is obvious that the error for state, control and feedback gain of
CW method with the parameters (M = 2, k = 4) is less than the other methods.
Though, the performance index for CW with the parameter (M = 2, k = 3) is
less than others.

The graphical comparison of the exact and approximation signals, with CW
and LW (M = 2, k = 4), for the state and control signals are shown in Fig 5.
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Figure 5: Comparison of the state (a) and control (b) signals for bvp4c, LW and
CW (M = 2, k = 4) methods with exact signals, for Example 3.

5.4 Example 4 [32]

Consider the following two dimensional time invariant linear quadratic OCP
[32]:

min J =

∫ π
2

0
(xT (t)

[
0 0
0 4

]
x(t) + u2(t))dt,

ẋ =

[
0 0
1 0

]
x(t) +

[
1
0

]
u(t),

x(0) = [1, 1]T .

The exact feedback gain for this problem is [32]:

K∗(t) =

(
sinh(π − 2t)− sin(π − 2t)

cosh2(π2 − t) + cos2(π2 − t)
,

cosh(π − 2t)− cos(π − 2t)

cosh2(π2 − t) + cos2(π2 − t)

)
.

The exact signals, states and control, can be calculated by the K∗(t). The errors
of the proposed methods (CW and LW), with two classes of parameters, (M =
2, k = 3, 4), are reported in Table 6. The errors of state signals, x1(t) and x2(t),
are shown by e2(x1) and e2(x2), respectively. Also the errors of the control signal
and the feedback gains are shown with e2(u), e2(k1) and e2(k2), respectively. The
exact performance index in this problem is J∗ = 3.2611. The results given in
Table 6 are the errors of signals. Also, LW is more accurate than CW.

The graphical results of the proposed method, LW and CW, are compared
with the exact solution and bvp4c in Fig 6 and Fig 7.

These four examples show that the method proposed in this paper is proper
and simple.
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Table 6: The error of optimal signals, feedback gains and performance index for
LW and CW for Example 4.

CW (M = 2) LW (M = 2)
Error k = 3 k = 4 k = 3 k = 4

e2(x1) 2.14× 10−2 7.0× 10−3 1.68× 10−2 6.1× 10−3

e2(x2) 1.04× 10−2 4.8× 10−3 1.0× 10−2 4.5× 10−3

e2(u) 2.55× 10−2 7.1× 10−3 2.08× 10−2 6.4× 10−3

e2(k1) 0.3646 2.31× 10−2 0.5899 1.36× 10−2

e2(k2) 0.5552 4.23× 10−2 0.9143 3.11× 10−2

e(J) 7.51× 10−2 1.16× 10−2 8.03× 10−4 2.29× 10−4
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Figure 6: Comparison of the state signals, x1(t) (a), x2(t) (b), for bvp4c, LW and
CW (M = 2, k = 4) methods, for Example 4.
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6 Conclusions

In this paper, a numerical indirect method based on wavelets was proposed
for solving the general continuous time-variant linear quadratic optimal control
problem. The necessary optimality conditions were applied to convert the main
problem into a boundary value problem, as a dynamic system. The new problem,
using two discrete schemes, Legendre and Chebyshev wavelets, was changed to
a system of algebraic equations. To demonstrate the efficiency of the proposed
method two analytical and two numerical examples were given.
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